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Nevuroanatomical Correlates of the Effects of

Stress on Memory: Relevance to the Validity
of Memories of Childhood Abuse

J. DOUGLAS BREMNER
STEVEN M. SOUTHWICK
DENNIS S. CHARNEY

The recent controversy surrounding the validity of memories of childhood abuse has
centered on the question of whether memories of abuse can remain dormant for many
years before they come to the surface in the form of delayed recall. Authors on one side
of the controversy suggest that memories of abuse can be not available to conscious
recall secondary to a mechanism described clinically as amnesia or *‘repression.’’!-2
The other side of the controversy claims that psychotherapists practicing a form of
psychotherapy known as recovered memory therapy have suggested episodes of abuse
to their patients which never in fact occurred, through leading questions or excessive
insisting .3

The fact that many individuals forget episodes of childhood abuse is well established.
As many as 38% of individuals who experienced abuse severe enough to result in a visit
to the hospital emergency room had no memory of the event 20 or more years later.!-#
An important question is whether there are special mechanisms involved in the loss of
memory for episodes of extreme childhood abuse in traumatized patients that are not
normally operative.>:6

Findings from studies of the neurobiology of memory may provide insight into
questions about delayed recall of childhood abuse. Traumatic stress has been shown in
animal studies to result in long-term changes in brain regions involved in memory.7-8
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62 Current Concepts of Memory

Neuromodulators released during stress have both strengthening and diminishing ef-
fects on memory traces, depending on the dose and the particular type of neuromodula-
tor. Dissociative amnesia, defined as gaps in memory that are not due to ordinary
forgetting, is associated clinically with traumatic stress, amd empirical studies have
shown an increase in this symptom in patients with posttraumatic stress disorder
(PTSD).% Changes in brain regions involved in memory may underlie many of the
symptoms of stress-related psychiatric disorders, including symptoms of amnesia. This
chapter will review the controversy surrounding the validity of childhood memories of
abuse from the standpoint of the neurobiology of memory. We feel that this approach
may shed some light on the controversy surrounding the so-called false memory syn-
drome.

Are Normal Memories Subject to Modification?

There has been considerable interest in the potential vulnerability of memory traces to
modification. In a typical example of a study addressing this question, subjects were
shown a series of slides that told a story involving a stop sign. These slides were
followed by the reading of a similar verbal narrative in which the reference to the stop
sign was replaced by a reference to a yield sign. When subjects were tested on recall of
material related to the slides, they were more likely to (incorrectly) report having seen a
yield sign than subjects who did not receive the misleading information. The authors of
this study concluded that misleading information led to an *‘overwriting’’ of the origi-
nal memory trace.'® Memory can also involve a shift in recall towards facts that fits
one’s expectations. For example, in a story in which the Six Million Dollar Man is said
to be too weak to carry a can of paint, children tested 3 weeks later had a shift in their
memory toward a recall that was more congruous with their pre-testing knowledge. 1

Other authors have argued against the overwriting hypothesis. They point out that if
subjects do not remember the original information, they may make a guess based on
their recall of the misleading information. This would mean that their chances of getting
the correct answer are less than that due to chance alone. In a study by McCloskey and
Zaragoza,!2 subjects were assessed with a test in which they saw slides, which included
one of a hammer, were then given misleading verbal information involving a screw-
driver, and then a forced-choice test of what they had seen in the slides, the choice
being between a hammer and an item to which they had previously not been exposed (a
wrench). The authors argue that if there is a true overwriting phenomenon with mis-
leading verbal material, then subjects exposed to misleading information should have a
decrement in recall in comparison with subjects who have not been previously exposed
to such information. They in fact found that there was no decrement in recall in this
paradigm in subjects for whom the misleading item was not one of the possible choices
in the forced-choice test of recall.!2 The effects of ‘‘source amnesia,”’ or the forgetting
of the location where the original memory was encoded, was examined in another study
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by testing subjects for the source of their memories as well as for the recalled item.
There was no difference in recall in this paradigm between subjects who had been
exposed to misleading information versus controls!3 (although see Lindsay!4). Sug-
gestibility effects may be due to the forgetting of the source of the memory, rather than
an overwriting phenomenon. Based on a review of these studies, there is not sufficient
evidence to conclude that suggestive information does or does not result in the rewriting
of memory.14-16

Effects of Stress on Memory in Normal Persons

Studies of normal memory may not be entirely applicable to those of memory for
stressful events. John F. Kennedy’s assassination raised the observation that most
people had an enhanced awareness of where they were and what they were doing at the
time they received news of his death. This led to a hypothesis formulated by Brown and
Kulik!7 that certain events that are surprising and consequential (emotionally charged),
which they described as *‘flashbulb memories,’’ lead to an enhancement of memory for
personal circumstances surrounding the event. These include such facts as what the
person was wearing and what they were doing at the time they received the news.
Studies of the explosion on January 28, 1986, of the space shuttle Challenger have
shown a relationship between emotional upsetness and recall of personal circumstances
upon hearing the news!8.19 (but see Neisser and Harsch20). Experimental paradigms
have also been used to examine differences in memory of details during stressful
compared to nonstressful situations. Studies of subjects who experienced traumatic
slides involving injury or threat have found a more enhanced recall of central details of
the slide and a reduced recall of peripheral details, in comparison with the recall of
details of neutral slides.2!-23

Studies of the effects of stress on memory in children have focused on the visit to the
doctor, since it entails the touching of private areas, or procedures such as blood-
drawing or injections, all of which are routine events in a doctor’s office, but which are
also similar to the types of events occurring in childhood abuse. These studies have
shown that small children are remarkably resistant to suggestion.24-30 Children under-
going physical exam have been shown to be very reliable in the reporting of genital
contact, in both open-ended and direct questioning; they answered questions about the
genital exam with better recall than for the nongenital physical exam.23:27 Most of the
children did not report genital contact unless they were directly asked.2? These studes
have implications for clinical treatment of childhood abuse, in that it can be expected
that the lack of direct questioning during the history-taking about abuse experiences
will probably result in many unreported cases of abuse. Stressful events such as innocu-
lation have been associated with an enhancement of memory and a resistance to mis-
leading suggestions. The stress of innoculation was also associated with a relative
enhancement of memory for central details related to the procedure.?* In summary, the
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findings are consistent with an enhancing effect of stress on memory, especially on
recall of central details.

Brain Mechanisms Involved in Normal
Memory Function

These studies have examined both the potential fallibility of memory and the effects of
stress on memory in normal persons. Findings from these studies may not be applicable
to situations in which there is severe childhood abuse. For many patients, childhood
abuse may be associated with long-term alterations in brain systems involved in
memory. We will now briefly review the mechanisms involved in normal memory
function. This will serve as a background to a discussion about the effects of stress on
memory.

Memory formation involves encoding, or the initial laying down of the memory
trace, storage, or consolidation, and retrieval. Consolidation occurs over several weeks
or more, during which time the memory trace is susceptible to modification.3!.32
Memory function can be divided into declarative, or explicit memory, and nondeclara-
tive, or implicit or procedural memory.33 Explicit memory includes free recall of facts
and lists, and working memory, which is the ability to store information in a visual or
verbal buffer while performing a particular operation utilizing that information. In
contrast, implicit memory is demonstrated only through tasks or skills in which the
knowledge is embedded. Forms of implicit memory include priming, conditioning, and
tasks or skills.

Memory is mediated by several connected subcortical and cortical brain regions. The
amygdala, hippocampus, and adjacent cortical areas, including perirhinal, entorhinal,
and parahippocampal cortex; medial thalamus, fornix, and mammillary bodies have
been shown to play an important role in memory. Other regions involved in memory are
the prefrontal cortex, including what is known as the dorsolateral prefrontal cortex
(middle frontal gyrus, principal sulcus region, or Area 46); orbital gyrus, and an-
teromedial prefrontal cortex (including the anterior cingulate cortex), as well as the
parietal association cortex. In addition, memories are stored in the primary cortical
sensory and motor areas that correspond to the particular sensory modality related to the
memory. These brain regions interact with one another in the mediation of memory
function.

The hippocampus plays an important role in explicit memory. Hippocampal lesions
impair acquisition of spatial information as measured by a number of tasks, for in-
stance, the ability of rats to learn to swim to a submerged water platform.34.35 Lesion
studies have been performed in monkeys in order to reproduce the anterograde explicit
memory impairment seen in individuals with surgical resection of the medial temporal
lobes.3? Lesions occurring within the hippocampal formation (dentate gyrus, hippo-
campus proper, subicular complex, and entorhinal cortex), amygdala, and surrounding
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perirhinal and parahippocampal cortices have been termed the H + A + lesion, where H
refers to the hippocampus, A to the amygdala, and + to the surrounding areas. Mon-
keys with H+ A + lesions have been shown to be severely impaired in delayed match-
ing to sample memory tasks (a test of the working-memory type of explicit memory
function), during which the animal has to remember where an object is located after a
time delay, but is normal in acquiring and retaining motor skills.3¢ Monkeys with the
H+ lesion were also found to have impaired explicit memory, although not to the
degree of the H+ A+ monkeys. Furthermore, damage to the amygdala alone was not
associated with declarative memory impairment,37 whereas damage to the cortical areas
adjacent to the amygdala, including the perirhinal cortex and parahippocampal gyrus
(which has important efferent and afferent connections with the hippocampus), was
associated with pronounced explicit memory impairment.38.3% These studies suggest
that the explicit memory impairment associated with the H+ A+ lesion is due to
damage to the hippocampal region (dentate, hippocampus proper, subicular complex,
and entorhinal cortex) and to the adjacent perirhinal cortex and parahippocampal gyrus.
In addition to mediating the working-memory type of explicit memory function in-
volved in the delayed matching to sample task, the hippocampus, but not the amygdala,
plays an important role in the memory of where an object is located in space.40

Findings in human subjects are consistent with those in monkeys, which demonstrate
a role for the hippocampus and adjacent cortex in explicit recall. Case studies, such as
the famous case of H.M., have shown a relationship between severe deficits in explicit
memory measured with free verbal recall and bilateral resection of the medial temporal
lobes (i.e., hippocampus and adjacent structures).*! Patients with Korsakoff’s amnesia,
in which damage occurs specifically to the hippocampus and dorsal-medial nucleus of
the thalamus because of a thiamine deficiency, exhibit a specific and severe deficit in
explicit memory measured by free verbal recall. In addition, in patients with hypoxic
encephalopathy following cardiac arrest, which is associated with glutamate toxicity to
the brain, the most common cognitive impairment is a deficit in explicit memory
function measured by free verbal recall. Following the interruption of oxygen to the
brain that occurs with a cardiac arrest, the brain region that is most susceptible to
damage is the CA1 region of the hippocampus. Positron emission tomography (PET)
studies of cerebral blood flow with ['5O]H,0 also indicate a role for the hippocampus in
explicit memory with the finding of an increase in right hippocampal blood flow during
a stem-completion explicit memory task.4? In summary, several lines of evidence from
preclinical and clinical studies have demonstrated a role for the hippocampus and
adjacent structures in explicit recall.

The thalamus is a gateway for sensory information relayed to multiple brain areas,
including the amygdala and primary sensory neocortical areas.*3:44 A portion of the
thalamus, the dorsal-medial nucleus, also plays a role in explicit memory tasks of free
verbal recall. In one case, the patient N.A. received a fencing injury to the mediodorsal
thalamic nucleus. He showed normal intelligence and general cognitive abilities, could
femember events from before the accident, and was able to converse normally. How-
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ever, he was unable to learn the names of new people or learn new information. These
findings show that the medial thalamus is involved in explicit memory.

The amygdala is an important mediator of emotional memory. Monkeys with amyg-
dala lesions have been shown to be less fearful than normal (i.e., they have alterations
in emotional memory) but are without impairment in explicit (cognitive) memory,
whereas monkeys with lesions of the hippocampus or adjacent cortex had normal fear
responses (i.e., abnormal emotional memory) but severe impairments in explicit (cog-
nitive) memory.45 The paradigm of conditioned fear has been used as an animal model
for stress-induced abnormalities of emotional memory.46-47 Noise bursts elicit the
acoustic startle response, which is used in the measurement of the conditioned fear
response. In the fear-potentiated startle paradigm, a normally neutral stimulus (or
something which typically has no effect on the animal, such as a bright light), is paired
with an aversive stimulus, such as electric shock. With repetitive pairing of the light
and the shock, a learning process occurs (conditioning) in which the light alone eventu-
ally causes an increase in the startle response (referred to as fear-potentiated startle).
The shock in this example is termed the unconditioned stimulus, because no training
was required for it to have the effect of potentiating startle; the light is referred to as the
conditioned stimulus, because the training trials pairing it with the shock were required
for it to develop the capacity for potentiating the startle response.46-47

The neuroanatomy and neurophysiology of conditioned fear responses in animals
have been well characterized (see Davis#6-47). Lesions of the central nucleus of the
amygdala have been shown to completely block fear-potentiated startle,*8-49 whereas
electrical stimulation of the central nucleus increases acoustic startle.> The central
nucleus of the amygdala projects to a variety of brain structures via the stria terminalis
and the ventral amygdalofugal pathway. One pathway is from the central nucleus to the
brainstem startle reflex circuit (nucleus reticularis pontis caudalis).>! Lesions of this
pathway at any point (caudal lateral hypothalamus-subthalamic area, substantia nigra,
central tegmental field) block the development of fear-potentiated startle, whereas
lesions of fibers which project outward from the central nucleus of the amygdala to sites
other than the brainstem startle circuit have no effect.52 The excitatory neurotransmit-
ters play an important role in fear conditioning mediated by the amygdala, as demon-
strated by the fact that antagonists of the N-methyl-D-aspartate (NMDA) receptor
infused into the amygdala block the acquisition (but not the expression) of the fear-
potentiated startle response.33.34

Considerable evidence suggests that the dorsolateral prefrontal cortex (principal
sulcus, or middle frontal gyrus) is involved in the working memory type of explicit
memory function.55 In nonhuman primates, working memory is assessed by delayed-
response tasks, in which monkeys perform tasks based on previously received informa-
tion after a short time delay. These tasks typically involve learning a *‘set of rules,”’
which is considered an important component of the memory function mediated by the
dorsolateral prefrontal cortex. Lesions of the dorsolateral prefrontal cortex result in
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deficits in working memory tasks, but explicit memory for features of the stimuli
remain unaffected.55 PET [!SO]H,O studies of cerebral blood flow in normal human
subjects also demonstrate a role for the dorsolateral prefrontal cortex in both the
encoding and retrieval of explicit memory traces*2:36-37-58 and attention.>®

The anteromedial (or ventromedial) prefrontal cortex includes the anterior cingulate
gyrus and is functionally and anatomically distinct from the dorsolateral prefrontal
cortex. In the late nineteenth century the famous patient named Phineas Gage had
a projectile metal spike pass through his frontal cortex, with damage specifically
to the anterior cingulate, anteromedial prefrontal cortex, and parts of the orbitofrontal
cortex. After the accident, the patient had normal memory recall and cognitive func-
tion, but his behavior deteriorated to irresponsibility, profanity, and a lack of social
conventions, which indicated a deficit in the planning and execution of socially suitable
behavior. This case suggests that the anteromedial frontal cortex (including the anterior
cingulate) is responsible for socially appropriate behavior and the processing of emo-
tionally related stimuli.®® PET ['SO]JH,O studies show an activation of the anterior
cingulate occurring along with visual and verbal association tasks>® and the Stroop
paradigm.>®

The orbitofrontal cortex is another frontal cortical area important to the effects of
stress on memory. The orbitofrontal cortex is the primary sensory cortical area for
smell. It also plays a role in the fear response, extinction, and certain types of memory.
Lesions of the orbitofrontal cortex result in deficits in explicit memory of visual features
of objects, but not in explicit memory for delayed-response tasks (i.e., working
memory), which functionally differentiates it from the dorsolateral prefrontal cortex.53
Studies of rats, however, in which olfaction is the primary stimulus, have shown
deficits in delayed-response tasks in association with lesions of the orbitofrontal cor-
tex.%! Lesions of the medial orbitofrontal cortex in rats result in a significant delay in
extinction to conditioned stimuli in the tone—footshock pairing paradigm, which sug-
gests that this region plays a role in extinction of conditioned stimuli.5?

Parietal cortex has been demonstrated to play an important role in spatial memory
and attention. Single-cell recordings from alert monkeys have shown an activation
of the parietal cortex when monkeys are required to attend to a visual location.®3 In
PET [!SO}H,O studies of sustained vigilance and attention in healthy volunteers,
subjects were asked to perform tasks of sustained visual attention (maintaining
passive visual fixation on a mark on a screen while detecting pauses) and somatosen-
sory attention (maintaining attention on their great toe while detecting pauses in a
series of touches). Regardless of modality of sensory input, sustained attention was
associated with increases in blood flow in the right prefrontal and superior parietal
cortex.%* Tasks of working memory have also shown activation of the right parietal
cortex.58

In addition to the hippocampus and other subcortical structures, explicit memory
Storage also takes place in sensory brain areas in which an event is first experienced. 53
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Visual information is stored in the occipital cortex, tactile information in the sensory
cortex, auditory information in the middle temporal gyrus, and olfactory information in
the orbitofrontal cortex. PET [!SO]JH,O studies of word presentation have shown an
activation of the striate (primary visual) and extrastriate cortex (visual association
cortex) in association with visual word presentation, and activation of the middle
temporal gyrus (primary auditory cortex), temporal-parietal cortex, and inferior
cingulate cortex along with explicit memory tasks involving verbal word presenta-
tion.36

Explicit memory formation is not instantaneous. After the laying down of the origi-
nal memory trace, a process that can take from weeks to months occurs, called con-
solidation, during which the stored memory is subject to modification or deletion.
Studies of rats suggest that explicit memory formation can be affected for weeks after
the laying down of the original memory trace. Electroconvulsive treatments (ECT) after
training sessions impair memory for the training experience. As the interval between
the ECT and the training session increases, the severity of memory impairment de-
creases.®® Studies of humans who have received ECT suggest that the process of
memory consolidation has a much longer time course. ECT results in an impairment of
recall of television programs occurring 1 to 2 years before the administration of ECT,
while memory of older programs is normal.¢” These findings suggest that modification
of the original memory traces can occur for a considerable period of time after the
original event.

Although the hippocampus and adjacent structures are important in encoding and
retrieval, they do not play a major role in the long-term storage of explicit memory.
Monkeys with intact hippocampus exhibited a pattern of remembering recently learned
objects more than they did objects learned in the past. Monkeys with lesions of the
hippocampus were impaired in the recall of recently learned objects, although their
recall of objects learned in the distant past was normal.®® The evidence is consistent
with the fact that memories are stored in the primary neocortical sensory and motor
areas and later evoked in those same cortical areas.®® It has been hypothesized®® that the
role of the hippocampus is to bring together memory elements from diverse neocortical
areas at the time of retrieval of explicit memory.

The neocortex may also play a role in some types of implicit memory function.
Patients with anterograde amnesia (i.e., deficits in explicit memory, or the recall of
things such as names and facts) do not necessarily lose all aspects of short-term memory
function. These patients show evidence of intact implicit memory function. Procedural
(or “‘implicit’’) memory is accessible only through performance, by engaging skills or
operations in which the knowledge is embedded, as demonstrated by priming. An
example of priming is providing the first few letters of the forgotten word and asking the
subject to say the first word that comes to mind. Priming can improve memory perfor-
mance in amnesic patients. Priming effects require only the intactness of the cortical
sensory area in which the memory was originally stored.®>
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Effects of Stress on Brain Regions Involved
in Memory

Efficient recall of memories associated with previous stressors 1s crucial for survival.
For instance, if one encounters a dangerous animal, the rapid recall of the memory of a
previous encounter with a dangerous animal of the same type may be life saving. Brain
regions involved in the recall of memory simultaneously activate the body’s stress
response system, leading to increased release of stress-related neurotransmitters and
neuropeptides. These in turn modulate the encoding of memory, which results in a type
of feedback loop of the body’s stress response system on memory storage.

Brain regions involved in memory also play a prominent role in the execution of the
stress response. In the early part of this century the observation was made that, with the
removal of the cerebral cortex, a hyperexcitability of anger developed, which was
termed sham rage.%®-7© Animals in the sham-rage state were quick to attack, and
behaved as if they were experiencing a profoundly threatening situation. Papez’! pro-
posed that the hypothalamus, thalamus, hippocampus, and cingulate are responsible for
the behaviors of the decorticate cat. Kluver and Bucy’2.73 noted that removal of the
temporal lobe (including hippocampus and amygdala) resulted in ‘‘psychic blindness,”’
or the absence of anger and fear. These observations led to the development of the
concept of the limbic brain, in which the brain regions listed above (and others,
including the orbitofrontal cortex) mediate the stress response.’* The circuits con-
structed by these authors are no longer valid, based on the current evidence, although
the individual brain regions described above as being part of the limbic system play an
important role in the effects of stress on memory function. There is considerable
literature claiming that stress also results in alterations in memory function. Therefore,
the brain regions that are responsible for memory function and the stress response are in
turn affected by exposure to traumatic stress. We review below the effects of stress on
brain regions involved in memory.

Stress has effects on the hippocampus, which leads to both changes in its cyto-
architecture as well as to deficits in explicit recall.”> Twenty-one days of restraint stress
has been shown to be associated with deficits in spatial memory as measured by the
radial arm maze.’® A release of glucocorticoids follows exposure to stress, and the
hippocampus is a major target organ for glucocorticoids in the brain. In addition,
the hippocampus appears to play an important role in the pituitary—adrenocortical
response to stress.”” Studies of monkeys who died spontaneously following exposure to
severe stress from improper caging and overcrowding were found on autopsy to have
multiple gastric ulcers, which is consistent with exposure to chronic stress, and hyper-
plastic adrenal cortices, which is consistent with sustained glucocorticoid release.”8
They also suffered damage to the CA2 and CA3 subfields of the hippocampus. Follow-
up studies suggested that hippocampal damage was associated with direct exposure of
glucocorticoids to the hippocampus.?® Studies in a variety of animal speciest*-8! have
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shown that direct glucocorticoid exposure results in a loss of pyramidal neurons82.78
and dendritic branching®3-8¢ which are steroid- and tissue-specific.83-86 Glucocorticoids
appear to exert their effect by increasing the vulnerability of hippocampal neurons to
endogenously released excitatory amino acids.®7-%° The same paradigm of stress expo-
sure which increases glucocorticoids and causes loss of apical dendritic branching in the
CA3 region of the hippocampus8# is associated with deficits in spatial memory.”¢ This
suggests that the effects of glucocorticoids on the hippocampus have functional impli-
cations.

The hippocampus also plays an important role in emotional memory of the context of
a fear-inducing situation. In conditioned fear response experiments where a tone (con-
ditioned stimulus) is paired with an electric footshock (unconditioned stimulus), reex-
posure of the animal to the tone will result in conditioned fear responses (increase in
“‘freezing’’ responses, which is characteristic of fear), even in the absence of the shock.
In addition, reintroduction to the context of the shock, or the environment where the
shock took place (the testing box), even in the absence of the shock or the tone, will
result in conditioned fear responses. Lesions of the amygdala before fear conditioning
block fear responses to both simple stimuli (tone) and to the context of the footshock.
Lesions of the hippocampus, on the other hand, do not interfere with acquisition of
conditioned emotional responses to the tone in the absence of the shock, although they
do interfere with acquisition of conditioned emotional responses to the context.®!
Lesions of the hippocampus 1 day after fear conditioning (but not as much as 28 days
after fear conditioning) also abolish context-related fear responses, but not the fear
response related to the cue (tone), while lesions of the amygdala block fear responses to
both the cue and the context.92 These studies suggest that the hippocampus has a time-
limited role in fear responses to complex phenomena with stimuli from multiple sensory
modalities, but not to stimuli from simple sensory stimuli.

Stress also has effects on amygdala function. The amygdala integrates information
necessary for the proper execution of the stress response, including (internal) emotion
and information from the external environment.93-95 Information from the environment
that has emotional significance is transmitted through the dorsal thalamus to sensory
cortical receiving areas, and from there to the amygdala.®¢ Emotional responses to
auditory stimuli are also mediated by direct projections from the medial geniculate in
the thalamus to the amygdala, which suggests that the cerebral cortex is not necessary
for emotional responses to stimuli.®” Evidence suggests that the lateral nucleus of the
amygdala is the site of convergence of stimuli from multiple sensory modalities, includ-
ing somatosensory and auditory stimuli. This suggests that this region may be the site
where information from unconditioned stimuli (footshock) and conditioned stimuli
(tone) converge, and are translated into a final common pathway of the conditioned
emotional response.8 The amygdala then activates the peripheral sympathetic system,
which plays a key role in the stress response, through the lateral nucleus of the hypo-
thalamus and the central gray, leading to increased heart rate and blood pressure, as
well as activating other aspects of the body’s stress response system. Projections from
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the central nucleus of the amygdala to brainstem regions, including the parabrachial
nucleus, dorsal motor vagal complex, and nucleus of the solitary tract, mediate the
cardiovascular response to stress (increased heart rate and blood pressure).®® Repeated
exposure to stress can result in an exaggerated startle response, which indicates an
increased sensitivity of amygdala function.

Very little is known about the effects of stress on dorsolateral prefrontal cortical
function. Studies are currently underway using the Wisconsin Card Sort Test, which is
felt to represent a measure of dorsolateral prefrontal cortical function, in PTSD patients
and controls (R. Yehuda, personal communication, 1994). We have found a differential
effect of yohimbine on dorsolateral prefrontal cortex metabolism in patients with PTSD
in comparison with controls.

Studies have demonstrated that the anteromedial prefrontal cortex (including the
anterior cingulate) plays an important role in the stress response. Lesions of the an-
teromedial prefrontal cortex (including the anterior cingulate) in the rat interfere with
conditioned emotional responses to fear-eliciting stimuli. Specifically, these lesions
result in a decrease in freezing behaviors and conditioned cardiovascular responses
(increased heart rate) with fear-inducing stimuli. Lesions of the cingulate gyrus increase
plasma levels of adrenocorticotropin (ACTH) and corticosterone in response to restraint
stress. This suggests that this area is a target site for the negative feedback effects of
glucocorticoids on stress-induced hypothalamic—pituitary—adrenal (HPA) activity. In
other words, the cingulate has a braking effect on the HPA axis system response to
stress. 100

Little is known about the effects of stress on parietal cortex function. Since the
parietal cortex is involved in attention, it is reasonable to predict that the increase in
focused attention which occurs during stressful situations is associated with activation
of the parietal cortex. As reviewed above, studies in normal human subjects have found
differences in recall during stressful as compared with nonstressful situations, with an
increase of focused attention on central details of stressful situations.

Stress-Induced Neuromodulation of Memory Traces

Neurotransmitters and neuropeptides released during stress have a modulatory effect
on memory function. Several neurotransmitters and neuropeptides are released dur-
ing stress which have an effect on learning and memory, including norepinephrine,
epinephrine, adrenocorticotropic hormone (ACTH), glucocorticoids, corticotropin-
releasing factor (CRF), opioid peptides, endogenous benzodiazepines, dopamine,
vasopressin, and oxytocin.!9! Brain regions involved in memory, including the hippo-
Campus and adjacent cortex, amygdala, and prefrontal cortex, are richly innervated by
these neurotransmitters and neuropeptides.

Epinephrine has a modulatory effect on memory function. Studies of the effects of
epinephrine (and other neuromodulators) have used the one-trial passive (inhibitory)
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avoidance test of memory. In this paradigm, the animal is placed in the starting
chamber of an alley with two compartments and punished with footshock as it enters the
second compartment. The amount of time that passes (or the latency) before the animal
enters the second chamber when it is placed there on the second day is used as an index
of retention of the training experience. Removal of the adrenal medulla, which is the
site of most of the body’s epinephrine, results in a blocking of passive avoidance
behavior, which is restored by the administration of adequate amounts of epineph-
rine. 02 Post-training administration of epinephrine after a learning task influences
retention, the rate of which resembles an inverted U-shaped curve: retention is en-
hanced at moderate doses and impaired at high doses.!93-105 Low-dose (0.2 pg) injec-
tions of norepinephrine into the amygdala facilitate memory function in an inhibitory
avoidance task, while higher doses (0.5 pg) impair memory function.!%¢ Depletion of
norepinephrine with DSP-4 has no effect on acquisition of place-learning, although it
does have a significant effect on retention.'07 Stimulation of the locus coeruleus, site of
most of the noradrenergic cell bodies in the brain, produces a significant improvement
in performance of acquisition and extinction of a reinforced task, whereas lesions of
the locus coeruleus suppress this effect.!9% Other studies have shown an impairment
in acquisition of fear-conditioned learning!® with noradrenergic depletion. The acetyl-
choline antagonist, scopolamine, impairs memory as measured by acquisition and
retention of an inhibitory avoidance task, as well as by place-learning. 97 The combined
blockade of the cholinergic and noradrenergic systems with scopolamine and pro-
pranolol, respectively, which only had effect when administered in combination, pro-
foundly impaired inhibitory avoidance as well as spatial learning.!!® In summary,
epinephrine and norepinephrine released during stress act to enhance the formation of
memory traces.37.11!

ACTH and glucocorticoids also affect learning and memory. Low doses of ACTH
given immediately after a new learning task enhance retention, while a 10-fold higher
dose has the opposite effect. 193 The effects of ACTH on learning and memory have also
been tested through the measurement of its effect on the acquisition of conditioned fear
responses. As reviewed above, animals are exposed to a conditioned stimulus (a tone)
and an unconditioned stimulus (footshock). The animal must learn to exit from a box
when the conditioned stimulus (the tone) comes on. ACTH enhances the acquisition of
learning in this paradigm. ACTH also delays extinction of the avoidance response, i.e.,
it takes longer for the animal to realize after the association between the tone and the
shock is ended that it does not have to exit the box when the tone comes on to avoid
the shock.!!2 The effects of ACTH on learning and memory are mediated through the
hippocampus and amygdala.!!3 Glucocorticoids, in contrast, enhance extinction in the
conditioned fear paradigm.'!2 The neuropeptide CRF, which stimulates release of
ACTH from the pituitary and hence, glucocorticoids from the adrenal, has anxiogenic
effects when administered into the cerebral ventricles.!!4

Other neurotransmitters and neuropeptides released during stress have effects on
learning and memory. Both the dopamine and acetylcholine brain systems play arole in
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enhancing memory formation.!!S When administered after training in a learning task
opiate receptor agonists impair retention, whereas opiate receptor antagonists, such as
naloxone, enhance retention.!'6 Opiate antagonists (naloxone) enhance retention of
recently acquired information when injected into the amygdala.!!7 Vasopressin injected
3 hours before or after a new learning paradigm increases resistance to extinction. The
time course of vasopressin’s effects suggests that it affects the consolidation phase of
new learning. Vasopressin also facilitates passive avoidance behavior,!!8 while oxy-
tocin has the opposite effect. Gamma-aminobutyric acid (GABA) is the main inhibitory
neurotransmitter in the brain and has receptor sites for benzodiazepines, which play a
role in the stress response. GABA antagonists such as bicuculline, which block the
action of GABA, impair memory retention following administration into the amygdala,
as measured by the inhibitory avoidance task, whereas GABA agonists have the oppo-
site effect.!!® The GABA antagonist picrotoxicin enhances the extinction of condi-
tioned fear. 105

Recent studies have begun to address the question of neuromodulation of memory
function with stress in human subjects. In one recent study, the B-adrenergic antago-
nist, propranolol, or placebo, was administered ! hour before a neutral or an emo-
tionally arousing (stress-related) story in healthy human subjects. Propranolol, but not
placebo, interfered with the recall of the emotionally arousing story, but not the neutral
story. This study suggests that activation of B-adrenergic receptors in the brain en-
hances the encoding of emotionally arousing memories. 120

Findings related to neuromodulation of memory function are of importance for
understanding the symptomatology of PTSD. The increased release of neurotransmit-
ters and neuropeptides with modulatory actions on memory function during stress
probably plays a role in deficits in encoding and retrieval, as well as in the enhancement
of specific traumatic memories, which is part of the clinical presentation of PTSD.
Chronic abnormalities in the function of these neurotransmitter and neuropeptide Sys-
tems in PTSD may contribute to the abnormalities in memory seen in these patients. For
instance, vasopressin has been shown to facilitate traumatic recall in patients with
PTSD.12! We have reviewed above how neuromodulators may be involved in the
mechanisms of stress sensitization and the pathological retrieval of traumatic memories
in patients with PTSD. We hope that an extension of preclinical findings on the effects
of stress-related neuromodulators on memory function to clinical populations will
enhance our understanding of memory alterations in PTSD.6.8.122

:‘itress-related Alterations in Brain Memory Systems
In Patients with Stress-related Psychiatric Disorders

There is emerging evidence that stress has effects on explicit memory function in
humans which involve deficits in both encoding and retrieval. Patients with a history of
€Xposure to stressors such as childhood abuse exhibit alterations in memory, including
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nightmares, flashbacks, intrusive memories, and amnesia of the traumatic event(s).
Studies of war veterans have documented incidents of alterations in memory function
on the battlefield, such as the forgetting of one’s name or identity and the forgetting of
events that has just taken place during the previous battle.!23:12% In one study it was
found that immediately after a major campaign, about 5% of the soldiers who had been
combatants had no memory for the events that had just occurred. 'S Follow-up studies
of WW II combat veterans have found that many veterans continue to suffer from
“*blackouts’’ or loss of memory many years after their period of service.!?¢ We have
reported an increase in the dissociative symptom of amnesia (in addition to increased
depersonalization, derealization, and identity disturbance) as measured with the SCID-
D (Structured Clinical Interview for DSMIIIR-Dissociative Disorders) in Vietnam
combat veterans with PTSD in comparison with Vietnam combat veterans without
PTSD.9 Episodes of amnesia in these patients took the form of gaps in memory which
lasted from minutes to hours or days. Individual patients reported a range of experi-
ences, from driving on the highway and suddenly noticing that three hours had passed,
to walking down a street in Boston and then finding themselves in a motel room in
Texas, with no idea of how they got there.

Physiological or emotional states may trigger recall of certain memories. For in-
stance, one patient who was a Vietnam veteran with PTSD was involved in a house fire.
He had to go back into the burning house in order to rescue other people who were
trapped inside. He had had previous experiences pulling comrades from a burning
helicopter while in Vietnam, an event for which he was previously amnestic. After the
house fire incident he had a sustained flashback to the original event in Vietnam, and all
he could say was *‘got to get them out, got to get them out!’’. This case illustrates how
particular physiological or emotional states may facilitate recall of events for which
there previously was amnesia, in a manner similar to state-dependent learning.!27 It
also illustrates how traumatic recall often occurs in dissociated states that are reminis-
cent of the state in which the event originally was experienced, as we review below. In
a similar fashion, victims of childhood sexual abuse may have no recall of their abuse
until they are subsequently victimized as adults by rape. The emotional state which this
involves is similar to the emotional state at the time of the original victimization; this
emotional state may be associated with a triggering of recall of the original episode of
childhood abuse. It may be that during states of arousal, release of neuromodulators
such as norepinephrine leads to pathological recall of traumatic memories for which the
patient may have been previously amnestic.

Evidence from other studies of traumatized patients is also consistent with that of
abnormalities of explicit memory function involving encoding. Studies of concentra-
tion camp survivors from the Second World War have found high rates of impairment in
explicit memory function.!28 In one group of 321 Danish survivors of WW II concen-
tration camps who experienced high levels of psychiatric symptomatology and were
seeking compensation for disability, 87% of the individuals complained of memory
impairment suggestive of deficits in explicit recall 10 or more years after release from
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internment. Severe intellectual impairment was also found upon testing in 61% of the
group.!29 Korean prisoners of war have been found to have an impairment of explicit
memory tasks of free verbal recall as measured by the Logical Memory component of
the Wechsler Memory Scale (WMS), whereas Korean veterans without a history of
containment were not impaired. 30 We have measured explicit memory function with
the WMS-Logical (for verbal memory) and WMS-Figural (for visual memory) compo-
nents in Vietnam combat veterans with PTSD (N = 26) and controls matched for
factors which could affect memory function (N = 15). PTSD patients had a significant
decrease in free verbal recall (explicit memory) as measured by the WMS-Logical
component, without deficits in IQ as measured by the Wechsler Adult Intelligence
Scale-Revised. 13! PTSD patients also had deficits in explicit recall as measured by the
Selective Reminding Test (SRT) for both verbal and visual components. We have
subsequently found deficits in explicit memory tasks of free verbal recall as measured
by the WMS-Logical component in adult survivors of childhood abuse seeking treat-
ment for psychiatric disorders.!32 Studies have found deficits in explicit short-term
memory as assessed by the Auditory Verbal Learning Test (AVLT) in Vietnam combat
veterans with PTSD, whereas such deficits were not found in National Guard veterans
without PTSD.133 The California New Learning Test also revealed these deficits in
Vietnam veterans with combat-related PTSD in comparison with controls. 134 Studies of
female Vietnam combat nurses with PTSD are currently in progress (J. Wolfe personal
communication, 1994). Deficits in academic performance have also been shown in
Beirut adolescents with PTSD in comparison with Beirut adolescents without PTSD
(P. Saigh, personal communication, 1994). These studies suggest deficits in encoding
on explicit memory tasks. However, other studies of patients with PTSD have shown
enhanced explicit recall of trauma-related words relative to neutral words in comparison
with controls.!35 In summary, these findings show deficits in encoding on explicit
memory tasks, deficits in retrieval, as well as enhanced encoding or retrieval of specific
trauma-related material.

Studies using neuroimaging techniques have found that stress in humans may be
associated with changes in brain structure, including the morphology of the hippo-
campus. As reviewed above, increased circulating glucocorticoids appear to be toxic to
the hippocampus. An increase in glucocorticoids has been shown in soldiers undergo-
ing the stress of bombardment.!36 Studies using computed tomography (CT) and mag-
netic resonance imaging (MRI) in human subjects suggest that a history of exposure to
therapy, or depression may be associated with changes in brain structure. !37-140 Studies
of concentration camp survivors from World War II seeking compensation for dis-
ability utilized pneumoencephalography and reported ‘‘[cerebral] atrophy of varying
degrees . . . in the majority [of the individuals].”’!2% Other authors who have
used pneumoencephalography to measure brain structure in concentration camp sur-
vivors reported *‘diffuse encephalopathy’” in 81% of cases (reviewed in Thygesen
et al.129),

We compared hippocampal volume measured with MRI in Vietnam combat veterans
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with PTSD (N = 26) and in healthy subjects (N = 22) who were matched for factors
that could affect hippocampal volume, including age, sex, race, years of education,
height, weight, handedness, and years of alcohol abuse. Patients with combat-related
PTSD had an 8% decrease in right hippocampal volume in comparison with controls (p
< 0.05) (Fig. 3-1), but no significant decrease in volume of comparison structures,
including the temporal lobe and caudate. Deficits in free verbal recall (explicit memory)
as measured by the Wechsler Memory Scale-Logical component, percent retention,
were associated with decreased right hippocampal volume in the PTSD patients (r =
0.64; p < 0.05). There was not a significant difference between PTSD patients and
controls in left hippocampal volume, or in volume of the comparison regions measured
in this study, left or right caudate and temporal lobe volume (minus hippocampus). !4}
We recently have analyzed data which shows a statistically significant 12% decrease in
left hippocampal volume in 17 patients with a history of PTSD related to severe
childhood physical and sexual abuse, as compared with 17 controls matched on a case-
by-case basis with the patients (Bremner et al., unpublished data, 1996). In summary,

Figure 3-1. Coronal magnetic resonance imaging (MRI) scan in a patient with posttraumatic
stress disorder (PTSD) (a) and a normal control (b). The hippocampus is visually smaller in the
PTSD patient compared to the control.
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this evidence is consistent with that of alterations in hippocampal morphology being
associated with deficits in explicit memory function in patients with PTSD.

Other aspects of the alterations in memory function seen in PTSD may be mediated
by the hippocampus. Electrical stimulation of the temporal lobe (including the hippo-
campus and adjacent cortical regions, parahippocampal gyrus, amygdala, and temporal
lobe neocortex) in patients with epilepsy resulted in the subjective experience of a
number of symptoms that are similar to those seen in PTSD. Eighteen out of 35 patients
experienced symptoms of some kind. These included the subjective sensation of fear (7
patients), complex visual hallucinations (flashbacks) (5 patients), memory recall (5
patients), deja vu (4 patients), and emotional distress (3 patients).!42 In another study,
electrical stimulation of the hippocampus and amygdala in epileptic patients was also
associated with visual and auditory hallucinations, and dream-like and memory-like
hallucinations, which are descriptively similar to flashbacks reported by patients with
PTSD.!43 We have found an increase in dissociative symptomatology and disruption of
delayed word recall in normal subjects following intravenous administration of keta-
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hydrochloride, a noncompetitive antagonist of the NMDA receptor.'* The NMDA
receptor, which is highly concentrated in the hippocampus, is involved in memory
function at the molecular level (i.e., long-term potentiation [LTP]).

The neurophysiology of the thalamus is of interest from the standpoint of trauma-
related symptomatology such as dissociation.!45 During slow-wave sleep, thalamic
nuclei exhibit slow spindle oscillations that disrupt transmission of sensory information
to cortical and limbic structures, while in wakefulness, the thalamus fires in a relay
mode that facilitates transmission of sensory information to cortical regions. During
rapid eye movement (REM) sleep (the sleep stage during which dreaming occurs), there
is a phasic enhancement of thalamocortical cells,46 which suggests that dreams (and
other internally generated experiences) may arise as a result of thalamocortical projec-
tions that bypass the slow spindle oscillations of the thalamus blocking transmission of
sensory information from the outside to the cortex. '47 Consistent with this process is the
fact that patients with paramedian thalamic infarcts have a profound sense of detach-
ment, reduced responsivity to external stimuli, and sleep-like posturing without the
electrophysiological correlates of non-REM sleep. Dissociative states such as flash-
backs in PTSD patients, which are also characterized by a feeling of unreality and
detachment, may be due to alterations in thalamic function that result in a blocking of
the transmission of sensory information from the outside. This is combined with the
generation of internal images derived from recalled memories which have the unreal
quality typical of dream or dissociative states.

Evidence from preclinical investigations indicates that the amygdala is involved in
abnormalities of emotional memory manifested by, for instance, conditioned emotional
responses, which are prominent in the clinical presentation of patients with PTSD.
There is evidence that the amygdala mediates alterations in emotional memory as
manifested by conditioned responses and other phenomena in humans (in addition to
animals). For example, electrical stimulation of the amygdala in healthy human sub-
jects has been shown to elicit feelings of anxiety.!48 Amygdala stimulation of human
subjects is also accompanied by activation of the stress response system, as manifested
by increases in peripheral catecholamines, a phenomenon that is also seen in animals
during conditioned fear responses.!4 Exaggerated startle response (which has been
demonstrated to be mediated by the amygdala in animals) is an important feature of the
clinical presentation of patients with PTSD, and empirical investigations have shown
alterations of startle to be associated with PTSD.!50 We have not found a difference in
amygdala volume measured with MRI between patients with combat-related PTSD and
healthy controls (Bremner et al., unpublished data, 1996).

Investigations have also addressed alterations in emotional memory as demonstrated
by conditioned emotional responses in patients with PTSD. The conditioned emotional
response can be studied in humans in the laboratory by using the psychophysiology
paradigm. Lawrence Kolb!5! noted that patients with PTSD have a heightened physio-
logical responsiveness to reminders of the original trauma that resemble conditioned
responses. These conditioned responses to cues related to the original trauma (combat
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films and sounds, scripts of traumatic events) parallel those seen in the conditioned fear
paradigm in animals. Studies have used measurements of heart rate and blood pressure
as indexes of sympathetic function (the psychophysiology paradigm) to examine the
relationship between traumatic reminders, subjective experience, and physiological
reactivity.!3? Increases in heart rate and systolic blood pressure following exposure to
combat sounds have been found in Vietnam veterans with combat-related PTSD but not
in non-veteran healthy subjects, non-PTSD combat veterans,!33.154 and Vietnam vet-
erans with other psychiatric disorders.!54 Increases in plasma epinephrine, pulse, blood
pressure, and subjective distress following combat stimuli have been reported in PTSD
patients but not in healthy controls.!5> PTSD patients have also been found to have a
higher heart rate, skin conductance, and frontalis electromyogram than controls after
hearing *‘scripts’’ of the subjects’s combat experiences read to them.!56 An increase in
heart rate responses and skin conductance following exposure to loud tones is also seen
in patients with PTSD, but not in healthy controls, patients with other anxiety disor-
ders, and patients without PTSD but with a history of past traumatic experiences.!57
This heightened responsiveness to reminders of the original trauma, or conditioned
emotional stimuli, ts probably mediated by the amygdala.

Abnormalities in the Stroop test, which are associated with activation of the cingulate
cortex, have been associated with PTSD. Delays in color-naming PTSD-related words
such as “‘body-bag’’ are involuntary, and such delays provide quantitative measures of
the intrusive cognition which is an important part of PTSD. Vietnam combat veterans
with PTSD have been found to take longer to color-name ‘‘PTSD’” words than to color-
name obsessive, positive, or neutral words; this delay was correlated with severity of
PTSD symptomatology as measured by the Mississippi Scale.!58 Stroop interference
has also been shown in patients with PTSD that is related to the trauma of rape. !59.160
These studies therefore make Stroop interference one of the more replicated findings in
PTSD.

The anterior cingulate is also involved in abnormalities of emotional memory. Induc-
ing fear by increasing the number of dangerous animals in a word list presented to
human subjects results in an increase in blood flow in the anterior cingulate.®4 Studies
of human patients with brain lesions have shown that damage to the anterior one-third
of the frontal cortex often results in seizures during which the individual experiences
intense feelings of fear or anguish. This suggests that the anteromedial prefrontal cortex
plays a role in fear-related behavior. In addition, some patients have been observed to
experience visual hallucinations during seizures, 6! which are reminiscent of the flash-
backs seen in victims of trauma.

The orbitofrontal cortex may be involved in abnormalities of emotional memory that
are seen in patients with a history of childhood abuse. Studies of human patients with
brain lesions have shown that lesions of the orbitofrontal cortex also result in symptoms
of intense fear during seizures. Some case reports have described a relationship be-
tween damage to the orbitofrontal cortex and visual hallucinations that appear to be
Similar to the flashbacks which are characteristic of PTSD.162 Yohimbine is an alpha-2
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noradrenergic antagonist which causes an increase in brain norepinephrine release
and increased symptoms of PTSD.!63 Through assessment by PET ['8F]2-fluoro-2-
deoxyglucose (FDG), we have found a differential response of cerebral metabolism in
PTSD patients and controls after the administration of yohimbine.!® The greatest
magnitude of difference was seen in the orbitofrontal cortex. Differences were also seen
in the prefrontal, temporal, and parietal cortex. The orbitofrontal cortex as well as other
brain regions are involved in implicit memory function. Patients with PTSD have been
shown to have a more enhanced implicit recall (i.e., recall following priming) of
trauma-related words than of neutral words in comparison with controls.!35> These
findings may have implications for the greater intrusiveness of trauma-related memo-
ries over normal memories in patients with PTSD.

Extinction

Extinction is also relevant to understanding the effects of stress on memory in patients
with PTSD. The mechanism of extinction involves cortical inhibition of amygdala
function. Victims of childhood abuse clinically exhibit a failure of extinction to trauma-
related stimuli. For instance, an individual who was locked in a closet may continue to
show anxiety reactions when they are in a close space, even when there is no real threat
of danger. The neocortex mediates extinction of emotional memory. For instance, the
auditory neocortex suppresses conditioned fear responses mediated by the amygdala to
stimuli that are not specific to the original conditioned stimulus (i.e., it prevents
stimulus generalization).!%> The auditory cortex is also involved in extinction through
the suppression of amygdala responsiveness. 66

Stress Sensitization

Stress sensitization refers to the phenomenon where repeated exposure to a stressor
results in an amplification of responsiveness to subsequent stressors. For example,
acute stress results in an increased release of norepinephrine in the hippocampus as well
as in other brain regions. Animals with a history of exposure to prior stressors become
sensitized to exposure to subsequent stressors, so that there is an accentuation of
norepinephrine release in the hippocampus with a subsequent stressor. 167 As reviewed
above, norepinephrine (in addition to other neurotransmitters and neuropeptides)
modulates memory formation and retrieval. This raises the possibility that stress sensi-
tization, acting through neuromodulators such as norepinephrine, may be associated
with alteration in memory encoding and retrieval, which may have implications for
understanding the mechanisms of traumatic recall in PTSD.

The mechanism of stress sensitization illustrates how the amygdala mediates the
development of stress-induced abnormalities of emotional memory. In stress sensitiza-
tion, repeated exposure to a stressor such as footshock results in the potentiation of the
startle response with reexposure to a subsequent footshock. Enhanced release of neuro-
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modulators in the amygdala that affect memory function, such as epinephrine or nor-
epinephrine, may mediate the abnormalities of emotional memory that are seen follow-
ing exposure to repeated stressors. Repeated exposure to stress will also potentiate
responsiveness to cues associated with the original stressors, as well as the number of
cues that can act as conditioned stimuli. This produces the phenomenon of stimulus
generalization, in which a wide range of stimuli in the environment can result in
conditioned responsiveness. As is seen both in animals in the laboratory model of
conditioned fear as well as in patients with PTSD, avoidant behavior develops in an
attempt to stay away from these stimuli in the environment, leading to conditioned
responses.

Stress sensitization has clinical applications for PTSD. We have found that exposure
to the stressor of childhood physical abuse increases the risk for the development of
combat-related PTSD. 168 Israeli veterans with a history of previous combat-related
acute stress reactions have also been found to be at increased risk for reactivation of
combat-related stress reactions in comparison with combat veterans without a history
of stress reaction in response to combat. !¢ In addition, other clinical examples exist of
how a history of exposure to prior stress increases the risk for stress-related symp-
tomatology upon reexposure to stressors.!70

A Working Model for the Neurobiology of Memory
Alterations in Survivors of Childhood Abuse

A special mechanism of memory which explains delayed recall of episodes of child-
hood abuse may be found in amnesia. Dissociative amnesia is not typically a normal
phenomenon of memory and has been found to be increased in patients with PTSD.
Amnestic symptoms in these patients ranged from gaps of memory lasting from minutes
to hours to days. Some patients reported driving down the highway from Boston to New
Haven, and suddenly realizing that they had covered 2 hours of the trip and had no
recall of what had happened during that time. One patient said that he was walking
down a street in Boston, and the next thing he knew he was in a motel room in Texas.
Another patient disappeared from an inpatient psychiatric unit, and found himself in the
woods somewhere in Illinois, in the middle of the night, wearing combat fatigues. A
patient of one of the authors with a history of childhood sexual abuse reported that she
was on the telephone at her day hospital program, and the next thing she knew she was
at home in bed. These clinical case examples provide a feeling for the wide range of
Phenomena that characterize dissociative amnesia in patients with a history of exposure
to extreme psychological trauma. A number of other recent studies have documented
the existence of dissociative amnesia in patients with PTSD.!171-176

Based on what is known about the effects of stress on brain systems involved in
Memory, there is evidence that mechanisms other than *‘normal forgetting’’ are proba-
bly operative in the delayed recall of childhood abuse. As noted above, the hippo-
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campus and adjacent cortices have been hypothesized to bind together information from
multiple sensory cortices into a single memory at the time of retrieval. For instance, an
episode of sexual abuse is marked by the smell of the perpetrator, the sounds involved
in the abuse, the visual appearance of the perpetrator and the scene where the abuse
takes place, and the tactile sensations. All of these individual features are stored in the
primary sensory cortical areas to which they correspond; for instance, smell is stored in
the olfactory cortex. When a similar situation recurs, the hippocampus and adjacent
cortex activate cortical areas and bring together the diverse sensory elements to recreate
the memory. Abnormalities of hippocampal function in PTSD may affect this normal
function of the hippocampus in bringing together memory elements from diverse neo-
cortical sensory areas. This may account for the abnormal intrusion of some traumatic
memories into consciousness, the disintegration of dissociated traumatic memories,
and the total lack of recall (amnesia) for other events.

Neuropeptides and neurotransmitters released during stress can modulate memory
function (Fig. 3-2). These neuromodulators act at the level of the hippocampus, amyg-
dala, and other brain regions involved in memory. Disorders such as PTSD may be
associated with long-term alterations in the function of these neuromodulators, which
would in turn be associated with alterations in memory in these patients that would not
occur in normal persons. Exposure to subsequent stressors could also be associated with
altered release of neuromodulators, resulting in altered memory recall in PTSD pa-
tients.

Mechanisms involving state-dependent recall may also be applicable to amnesia for
abuse.!27 State-dependent recall refers to the phenomenon whereby an affective state
similar to that at the time of encoding leads to a facilitation of memory retrieval. For
instance, memories encoded during a state of sadness will have a facilitated retrieval
during similar states of sadness. Similar situations can occur for other emotional states.
To extend this concept to victims of abuse, it can be seen that particular emotions will
predominate at the time of the original abuse, such as extreme fear or sadness. These
emotional states occur infrequently during a routine adult life that is free of stressors.
The recurrence of the extreme fear or sadness that occurred during the original abuse
during psychotherapy or with exposure to a subsequent stressor may lead to a delayed
recall of the original abuse experiences. A clinical example of this would be the victim
of sexual abuse who has no recall of her experiences of sexual abuse until she is raped as
an adult, which leads to a recall of the original trauma.

Concluding Remarks

We have examined the question of the validity of memories of childhood abuse as it
relates to the current controversy surrounding the false memory syndrome from both
theoretical and biological perspectives. Studies in cognitive psychology have provided
evidence for an enhancement of central details related to stressful events and for the
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Figure 3-2. Diagrammatic representation of the effects of traumatic stress on brain regions and
systems involved in memory. Input to the amygdala from orbitofrontal cortex and temporal
cortex is involved in extinction of conditioned fear, which is mediated by the amygdala. Release
of corticotropin releasing-factor (CRF) from the hypothalamus causes release of ACTH from the
pituitary, which in turn results in release of cortisol from the adrenal. CRF and cortisol play an
important role in the stress response, modulate memory function, and are altered in PTSD. The
hippocampus is involved in short-term memory and fear responses for context. High levels of
cortisol associated with stress may damage the hippocampus and lead to altered memory function
in PTSD. Locus coeruleus, site of norepinephrine (NE) cell bodies, is also involved in stress.
Alterations in NE function are associated with PTSD, and may underlie sensitization and alter-
ations in memory in PTSD patients.

exclusion of peripheral details in normal human subjects. Much has been made in the
popular press about the potential effects of suggestion on memory. However, a review
of this literature does not support the conclusion that suggestions can lead to a rewriting
of original memory traces.

Patients with PTSD have been shown to have an increase in self-reported dissociative
amnesia, which is defined as gaps in memory not due to normal forgetting. Other
aspects of memory function are deficient in PTSD patients, including verbal recall.
Both preclinical and clinical studies support the idea that traumatic stress is associated
with alterations in brain regions involved in memory, resulting in functional memory
deficits. Other concepts such as state-dependent memory, stress sensitization, and
modulation of memory traces during and after encoding by neurotransmitters and
neuropeptides released at high levels during stress, provide potential explanations for
delayed recall of memories of childhood abuse. These mechanisms are probably only
applicable to patients with disorders such as PTSD secondary to abuse, and not to the
entire range of individuals who are exposed to childhood abuse, including those who do

. ot develop abuse-related psychiatric disorders.

Studies to date have provided only an incomplete picture of how biological mecha-

Risms may explain phenomena such as delayed recall of childhood abuse and dissocia-
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tive amnesia. We do not mean to imply that definitive biological mechanisms have been
elucidated which could explain these phenomena. Rather, this chapter is a critical
review of the current status of the topic, and through it we have sought to raise
awareness about how the neurobiology of the effects of stress on memory may be
applicable to these questions. Future studies should shed additional light on the neuro-
biology of memory in individuals with a history of exposure to childhood abuse.
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