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Abstract

Preclinical studies show that animals with a history of chronic stress exposure have increased
hypothalamic-pituitary-adrenal (HPA) axis reactivity following reexposure to stress. Patients
with posttraumatic stress disorder (PTSD) have been found to have normal or decreased func-
tion of the HPA axis, however no studies have looked at the HPA response to stress in PTSD.
The purpose of this study was to assess cortisol responsivity to a stressful cognitive challenge
in patients with PTSD related to childhood abuse. Salivary cortisol levels, as well as heart
rate and blood pressure, were measured before and after a stressful cognitive challenge in
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patients with abuse-related PTSD (N = 23) and healthy comparison subjects (N = 18). PTSD
patients had 61% higher group mean cortisol levels in the time period leading up to the cogni-
tive challenge, and 46% higher cortisol levels during the time period of the cognitive challenge,
compared to controls. Both PTSD patients and controls had a similar 66–68% increase in
cortisol levels from their own baseline with the cognitive challenge. Following the cognitive
challenge, cortisol levels fell in both groups and were similar in PTSD and control groups.
PTSD patients appeared to have an increased cortisol response in anticipation of a cognitive
challenge relative to controls. Although cortisol has been found to be low at baseline, there
does not appear to be an impairment in cortisol response to stressors in PTSD.
Published by Elsevier Science Ltd.
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1. Introduction

Posttraumatic stress disorder (PTSD) is a disabling condition (Fairbank et al.,
1999; Schlenger et al., 1999) associated with exposure to traumatic events, which
has been reported to affect 8% of individuals in US at some time in their lives
(Kessler et al., 1995). Childhood abuse, which may affect as many as one in five
individuals in this country (McCauley et al., 1997), is one of the most common
traumatic events that lead to the development of PTSD (Kessler et al., 1995). Given
the sheer magnitude of this problem, it is especially important to understand the
effects that early psychological trauma can have on the individual, including both
behavioral and biological consequences (Saigh and Bremner, 1999; Bremner, 2002).

The hypothalamic-pituitary-adrenal (HPA) axis (Yehuda et al., 1995a,b,c) plays an
important role in the response to stress. Corticotropin-releasing factor (CRF) released
during stress (Chappell et al., 1986) from nerve terminals originating in the paraven-
tricular nucleus of the hypothalamus increases the secretion of adrenocorticotropin
hormone (ACTH) from the anterior pituitary, which in turn stimulates release of
glucocorticoids from the adrenal (Arborelius et al., 1999). CRF release from the
hypothalamus is inhibited by the hippocampus (Herman et al., 1989; Jacobson and
Sapolsky, 1991). Some studies have shown that stressors, including early stressors
such as maternal deprivation, result in chronic increases in plasma glucocorticoid
levels (Dallman and Jones, 1973; Sapolsky et al., 1997) with a potentiation of gluco-
corticoid and CRF responsiveness to subsequent stressors (Fride et al., 1986; Stanton
et al., 1988; Levine et al., 1993; Plotsky and Meaney, 1993; Makino et al., 1995;
Coplan et al., 1996; Ladd et al., 1996; Smith et al., 1997; Takahashi et al., 1998).
Other studies have not been consistent with potentiation of cortisol response to stress,
while some studies even suggest that chronic stress is associated with a diminution
of stress responsiveness (Daniels-Severs et al., 1973; Katz et al., 1981; Young and
Akil, 1985; Rivier and Vale, 1987). Chronically stressed animals have also been
shown to develop an inability to terminate the glucocorticoid response to stress
(Sapolsky et al., 1984a,b), and deficits in feedback inhibition of the HPA axis by
glucocorticoids (Young et al., 1990). The deficits in the negative feedback effects
of dexamethasone on the HPA axis, could be related to observed decreases in gluco-
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corticoid receptor binding in the hippocampus (Sapolsky et al., 1984b; Makino et
al., 1995; Smith et al., 1997). Stress has been associated with damage to the hippo-
campus with associated impairments in new learning and memory (Sapolsky et al.,
1990; McEwen et al., 1992; Sapolsky, 1996), which may lead to a release of inhi-
bition of CRF release from the hypothalamus. A variety of mechanisms have been
proposed for stress-induced hippocampal deficits, including glucocorticoids
potentiating the toxicity of excitatory amino acids (Sapolsky, 1996), decreased brain-
derived neurotrophic factor (BDNF) (Nibuya et al., 1995; Smith et al., 1995; Duman
et al., 1997), inhibition of neurogenesis (Gould et al., 1998), or a combination of
these factors. These observations suggest that early stressors lead to long-term alter-
ations in the HPA axis, characterized primarily by an increase in HPA axis reactivity.

Early stress is also associated with life-long increases in sensitivity of the norad-
renergic system (Bremner et al., 1996a,b; Francis et al., 1999; Sanchez et al., 2001;
Vermetten and Bremner, 2002). Noradrenergic input stimulates release of CRF from
the paraventricular nucleus of the hypothalamus. Maternal separation resulted in an
increased release of norepinephrine in the paraventricular nucleus of the hypothala-
mus. Maternal separation also resulted in a decrease in the alpha-2 autoreceptor of
the locus coeruleus (Francis et al., 1999). Since the alpha-2 receptor is inhibitory,
this would be expected to result in an increase in locus coeruleus activity, with
increased noradrenergic reactivity. In summary, early stress is associated with lasting
increases in noradrenergic responsivity.

Patients with PTSD have been found to have alterations in the HPA axis and
noradrenergic systems. Studies of baseline HPA axis function in patients with PTSD
have been inconsistent. Studies comparing males with chronic combat-related PTSD
to controls found long-term alterations in HPA axis function including increased
levels of CRF in cerebrospinal fluid (CSF) (Bremner et al., 1997a; Baker et al., 1999),
and blunted ACTH response to CRF challenge (consistent with CRF overdrive) in
some studies (Smith et al., 1989) but not others (Rasmusson et al., 2001). However,
some studies of patients with chronic combat (Mason et al., 1986; Yehuda et al.,
1991b) or holocaust-related (Yehuda et al., 1995c) PTSD found decreased cortisol
measured in 24 h urine, as well as decreased cortisol based on plasma concentrations
sampled over a 24 h period (Yehuda et al., 1994) in patients with chronic combat-
related PTSD, while other studies in PTSD related to combat (Pitman and Orr, 1990;
Mason et al., 2002) or abuse (Lemieux and Coe, 1995; De Bellis et al., 1999a)
found no difference (Mason et al., 2002) or increased cortisol (Pitman and Orr, 1990;
Lemieux and Coe, 1995; De Bellis et al., 1999a) in 24 h urine volumes. Studies in
combat-related chronic PTSD found normal cortisol response to standard dexame-
thasone suppression test (DST) (Kudler et al., 1987), while an excessive suppression
of cortisol with low dose (0.5 mg) dexamethasone was found in both patients with
combat (Yehuda et al., 1993, 1995a) and abuse-related PTSD (Stein et al., 1997b).
Other studies in combat-related PTSD found an increased number of glucocorticoid
receptors on peripheral lymphocytes (Yehuda et al., 1991a, 1995a,b). Adult patients
with chronic and severe PTSD were found to have reduced volume of the hippocam-
pus (Bremner et al., 1995, 1997b; Gurvits et al., 1996; Stein et al., 1997a), which
as noted above may contribute to increased CRF, although there was no change in
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hippocampal volume in childhood (De Bellis et al., 1999b) and new-onset (Bonne
et al., 2001) PTSD. Several studies have found increased noradrenergic function in
PTSD. These studies measured norepinephrine directly in plasma or urine, or
indirectly through assessment of psychophysiological markers of heart rate and blood
pressure (reviewed in Bremner et al., 1996a,b). Most studies found increased respon-
sivity of this system, not necessarily at baseline, but more consistently with exposure
to a stressful traumatic reminder (Pitman et al., 1987). Studies in children with abuse
in which diagnosis of PTSD was not established found increased catecholamines in
24 h urine (including norepinephrine, epinephrine, and dopamine) (De Bellis et al.,
1994). Studies in children with the diagnosis of PTSD are also consistent with elev-
ations in catecholamine (De Bellis et al., 1999a). These findings are consistent with
animal studies showing increased noradrenergic activity following early stress.

Findings related to the HPA axis in PTSD patients are often not congruent with
findings from animal studies and in some cases seem paradoxical. They raise the
question of how glucocorticoids could cause hippocampal damage if cortisol levels
in PTSD are normal or low. For example, cortisol levels in the aftermath of rape in
adulthood were not found to be elevated in women who subsequently developed
PTSD (Resnick et al., 1995; Yehuda et al., 1998). Studies in PTSD performed to
date have largely focused on characterizing possible baseline differences between
PTSD patients and controls. Study paradigms that involve experimental perturbation
of the cortisol system, as seen during stressful challenges, may add additional infor-
mation about function of the HPA axis in PTSD.

The cortisol system can be highly susceptible to the influence of psychological
factors (Bourne et al., 1967; Miller, 1968; Rubin et al., 1969; Miller et al., 1970;
Hofer et al., 1972a,b), making the interpretation of findings of baseline HPA axis
function in PTSD difficult to interpret. Several studies have demonstrated the feasi-
bility of using cognitively challenging tasks such as mental arithmetic, simulated
driving, or public speaking, as laboratory tests in the study of the stress response,
and have applied this paradigm to research on aging and depression, with findings
of blunted cortisol response in depression (Wittersheim et al., 1985; Gotthardt et al.,
1995; Trestman et al., 1991; Seeman et al., 1995a,b; Kirschbaum et al., 1996; Lupien
et al., 1997). One study showed that women with depression and a history of child-
hood abuse had increased cortisol response to a public speaking stressor (Heim et
al., 2000). Recently, in a study on neuroendocrine responses to white noise and
combat sounds, veterans with PTSD showed enhanced cortisol levels compared to
veteran controls without PTSD and non-veteran controls (Liberzon et al., 1999). The
timeframe of the cortisol assessment (only once before and once immediately after
exposure) was inappropriate to distinguish baseline levels and cortisol reactivity to
stress, however. Thus, it remained unclear whether the elevations reflected enhanced
chronic activation or anticipatory anxiety to the combat sounds and white noise.
There are no other studies to date that have examined the effects of stressful pertur-
bation on HPA axis functioning in PTSD. The purpose of the present study was to
assess cortisol and sympathetic (heart rate and blood pressure) response to a stressful
challenge in patients with PTSD and controls. Based on findings in animal studies,
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we hypothesized an increased cortisol and sympathetic response to stressful cognitive
challenge in PTSD patients relative to controls.

1.1. Methods

Subjects included 41 men and women, 18 years of age or older who underwent
a stressful cognitive challenge in conjunction with measurement of cortisol, heart
rate and blood pressure, and behavioral responses. Subjects included men and women
with civilian PTSD (N = 23) and healthy men and women without trauma or PTSD
(N = 18). There was no difference in mean age between PTSD patients (43 (10 SD))
and healthy subjects (49 (10 SD)), or in years of education between PTSD patients
(16 (2 SD)) and healthy subjects (16 (3 SD)). Thirteen out of 23 (57%) of the PTSD
patients were women and 10/23 (43%) men, 12/18 (67%) of healthy subjects were
female and 6/18 (33%) were men. All subjects were recruited by advertisement and
gave written informed consent for participation in the study. The written informed
consent included information about how they would undergo a stressful challenge
which involved problem solving and other tasks under time pressure. All women
were premenopausal as determined by subject history. Subjects were admitted to a
General Clinical Research Center (GCRC) scatter bed located at the Yale Psychiatric
Institute (YPI) for measurement of salivary cortisol, heart rate and blood pressure,
and behavioral response to stressful cognitive challenge. The scatter bed is a single
room located in the YPI inpatient unit which was dedicated to GCRC research in
psychiatric patients. PTSD patients were included with a history of childhood physi-
cal or sexual abuse, defined as rape, attempted rape, molestation, physical assault or
attack with injury, before the age of 18, as measured by the Early Trauma Inventory
(ETI) (Bremner et al., 2000), and the diagnosis of PTSD based on the Structured
Clinical Interview for DSMIV (SCID) (Spitzer et al., 1987). Patients were excluded
if they presented with a history of current alcohol or substance abuse or dependence
in the past six months, schizophrenia, or an eating disorder, as determined by the
SCID, serious medical disorder as determined by laboratory tests and physical exam-
ination, organic mental disorder, neurological disorder, or head trauma. All patients
were medication free four weeks or more before the study. Healthy subjects met the
same inclusion criteria for PTSD patients with the exception of having a history of
psychological trauma or the diagnosis of PTSD or other psychiatric disorder based
on the SCID.

All subjects were evaluated with the SCID for co-morbid psychiatric diagnoses.
Nine out of 23 PTSD patients (39%) fulfilled criteria for a lifetime history of major
depression and one (4%) for current major depression. Two patients (9%) fulfilled
criteria for lifetime (not current) history of panic disorder without agoraphobia, and
three patients (13%) had a current and lifetime history of generalized anxiety dis-
order. Eight patients (34%) met criteria for current and lifetime social phobia, three
patients (13%) had lifetime simple phobia, and two (9%) had current simple phobia.
One patient (4%) met current and lifetime criteria for agoraphobia, and one (4%)
for obsessive compulsive disorder. None of the patients had current (past six months)
alcohol or substance abuse/dependence. Three PTSD patients (13%) fulfilled criteria
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for a lifetime history of alcohol dependence, one (4%) for a lifetime history of poly-
substance abuse, and one (4%) for lifetime history of polysubstance dependence.

PTSD subjects were assessed with the Clinician Administered PTSD Scale (CAPS)
(Blake et al., 1995), a reliable and valid measure of PTSD symptom level with
subcomponents for the individual symptom clusters. Subjects were also assessed with
the Civilian Version of the Mississippi Scale for Combat-Related PTSD, a self-report
measure of current PTSD symptom severity that is a continuous measure (Kulka et
al., 1990). Severity of childhood abuse, and traumatic events in adulthood, were
evaluated with the ETI, a reliable and valid instrument for assessment of childhood
and adult abuse and trauma (Bremner et al., 2000). Baseline dissociative state symp-
tom levels were assessed with the Clinician Administered Dissociative States Scale
(CADSS), a reliable and valid instrument (Bremner et al., 1998). PTSD patients had
a mean CAPS score of 79 (28 SD), mean CADSS score of 14 (15 SD), and Civilian
Mississippi Scale score of 117 (16 SD). Mean score on the ETI-self report scale for
severity of childhood trauma was 60 (28 SD).

Subjects were admitted to a scatter bed of the GCRC for cognitive challenge. All
subjects were studied between 2:00 and 4:00 p.m. Subjects were placed in a hospital
bed with application of dynamap cuff for measurement of heart rate and blood press-
ure, baseline ratings and salivary cortisol. Subjects then rested in a hospital bed for
60 min while listening to a tape with relaxing music and sounds with measurement
of heart rate, blood pressure, and salivary cortisol at 60, 10, and 5 min before the
initiation of the cognitive challenge. Immediately before the initiation of the chal-
lenge, a physician wearing a white laboratory coat entered the room and initiated a
series of cognitively challenging tasks which lasted for 20 min. The cognitive tests
were based on a protocol previously used in studies of aging (Seeman et al., 1995a,b)
and included challenging arithmetic (multiplication, division, addition and
subtraction), cognitive tasks (stroop task, e.g. looking at the word red spelled in the
color green and naming the color green), problem solving, matching figures to num-
bers and memory for figure-number pairings, and unscrambling words. Each individ-
ual task was scored by the rater and performed under time pressure. Negative feed-
back regarding the score and the time spent in the task, was consistently given, and
level of difficulty was increased until subjects were unable to successfully complete
the tasks. After the end of the cognitive tasks the physician left the room. Heart rate
and blood pressure were measured at 2, 4, 6, 7, 10, 12, 14, 15, 16, 18, 20, 30, 35,
45, 60, 75 and 90 min after the initiation of the cognitive challenge. Salivary cortisol
was measured at 0, 10, 15, 20, 30, 35, 45, 60, 75, and 90 min after the initiation of
the challenge.

Saliva samples were collected using Salivette collection devices and stored at 70
°C. Salivette tubes were centrifuged (0–4°C) to prepare saliva which was analyzed
for cortisol using an 125I immunoradiometric assay kit available from Diagnostic
Products Corporation (Los Angeles, CA). Samples and standards (200 µl) were
determined in duplicate; standard concentrations ranged from 67 pg/ml to 3.0 ng/ml.
Day-to-day coefficients of variation for low (398 pg/ml) and high (4.12 ng/ml) con-
centration quality assessment (QC) samples were 10.1 and 8.4%, respectively.

In subjects with a single inadequate or missing sample data was interpolated. Sub-
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jects with two or more adjacent samples or critical (e.g. time 0) samples missing
were excluded from analysis.

Repeated measures ANOVA with Duncan’s Multiple Range Test was used to
compare cortisol, heart rate and blood pressure response to cognitive challenge
between the groups. Pearson correlations were used to compare behavioral data and
cortisol, heart rate and blood pressure data.

2. Results

2.1. Cortisol levels in response to cognitive challenge

The cognitive stress challenge resulted in an increase in cortisol levels in both
PTSD patients and controls (main effect for time: F = 6.10; df = 12; p � 0.0001).
Salivary cortisol levels were elevated in PTSD patients relative to controls during
the hour preceding the cognitive stressor and during the course of the stress challenge
(i.e. from �60 to +20 min) (F = 6.79; df = 1,38; p � 0.0001). Specifically cortisol
levels were elevated in the time period before the cognitive challenge in anticipation
in patients with PTSD relative to controls (Fig. 1). Cortisol levels were elevated by
an average of 61% in PTSD patients at the �60, �30, �5 and 0 min time points
(F = 5.05; df = 1,38; p = 0.03). As can be seen in Fig. 1, the greatest increase was
at the �5 time point, where cortisol levels were double in PTSD relative to controls.
During the time of the cognitive challenge (from time 15 to 20) and for an additional
15 min after the termination of the challenge, cortisol levels increased in both PTSD
patients and controls, and remained elevated by an average of 46% in PTSD patients

Fig. 1. Cortisol response to stressful cognitive challenge. There were elevated levels of cortisol in both
the time period in anticipation of challenge (from time �60 to 0) and during the cognitive challenge
(time 0–20). PTSD patients and controls showed similar increases in cortisol relative to their own baseline
in response to the cognitive challenge (i.e. no time by diagnosis interaction). In the recovery period (time
45–90 min) there was no difference in cortisol levels between PTSD patients and controls.
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relative to controls during these time points, eventhough the magnitude of increase
from each group’s own baseline was similar (68% in PTSD and 66% in controls)
(no significant time by diagnosis interaction). In the recovery phase (45, 60, 75, and
90 min after initiation of the challenge) cortisol levels decreased in both groups, and
there was no difference in cortisol levels between patients and controls in this time
period. Cortisol values returned to the pre-challenge baseline in controls, and actually
fell 20% below the pre-challenge baseline in PTSD patients. Baseline cortisol levels
at the �60 min time point were correlated with log transformed area under the curve
(AUC) values for the 0–35 min time period of the challenge in the healthy subjects
(r = 0.72; df = 16; p = 0.0011) and the PTSD patients (r = 0.48; df = 22; p =
0.0199).

2.2. Heart rate and blood pressure responses to cognitive challenge

Cognitive challenge resulted in a significant increase in heart rate in patients and
controls (main effect for time: F = 12.78; df = 19,646; p � 0.0001) (Fig. 2). During
the anticipatory period preceding the challenge there was no significant difference
in heart rate between PTSD patients and controls. During the onset and initial part
of the challenge (from �10 to +10 min) PTSD patients had statistically non-signifi-
cant 6% higher heart rates than controls, and both groups showed a similar increase
in heart rate in response to the cognitive challenge, with PTSD patients increasing
from 72 to 81 b.p.m. (13%) from 10 min before the challenge to 10 min into the
challenge, and controls increasing from 71 to 79 b.p.m. (12%) in the same time
period. Heart rate continued to be higher in the recovery phase in PTSD patients, on
an average 3% higher than in controls (an effect that was not statistically significant),

Fig. 2. Heart rate response to stressful cognitive challenge. Cognitive challenge resulted in a significant
increase in heart rate in both patients and controls. PTSD patients showed a pattern of increased heart
rate immediately before and during the cognitive challenge (from �10 to 10 min) that was not statisti-
cally significant.
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Fig. 3. Systolic blood pressure response to challenge. Cognitive challenge resulted in a significant
increase in systolic blood pressure in both patients and controls, however, there was no difference in
systolic blood pressure between groups.

returning to 72 b.p.m. versus 69 b.p.m. in controls 20 min after termination of the
challenge.

Cognitive challenge resulted in an increase in blood pressure in both patients and
controls, including an increase in diastolic blood pressure (F = 9.44; df = 16,665;
p � 0.0001) (Fig. 3) and systolic blood pressure (F = 9.37; df = 16,665; p �
0.0001) (Fig. 4). There was no statistically significant difference in blood pressure
between patients and controls. Average blood pressure in PTSD was 117/70 com-

Fig. 4. Diastolic blood pressure response to cognitive challenge. Cognitive challenge resulted in a sig-
nificant increase in diastolic blood pressure in both PTSD patients and controls. There was a non-signifi-
cant pattern of higher diastolic blood pressure in the period immediately before and during the early part
of the cognitive challenge (from time �10 to 10 min) in PTSD patients relative to controls, as well as
during the recovery period.
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pared to 116/66 in controls in the time period before the start of the cognitive chal-
lenge. Both groups had a similar 14% increase in diastolic blood pressure during
the challenge, increasing to 127/80 in PTSD patients and 127/75 in controls. In the
recovery period blood pressure continued to be higher in PTSD, e.g. 20 min after
the end of the challenge blood pressure was 118/68 in PTSD compared to 115/63
in controls, although these differences were not statistically significant differences.

2.3. Gender differences in cortisol response to cognitive challenge

Male PTSD patients showed a pattern of higher cortisol levels during cognitive
challenge relative to females with PTSD and to male and female controls (Fig. 5).
Male PTSD patients showed higher cortisol levels from time 0 baseline to 35 min
after the start of the challenge although these differences were not statistically sig-
nificant. Heart rate was significantly higher in women versus men during the cogni-
tive challenge and the recovery period (F = 5.25; df = 1,34; p = 0.03) (Fig. 6);
there was no interaction between diagnosis and gender. There were no differences
in blood pressure response by gender to cognitive challenge.

2.4. Relationship between behavioral variables and cortisol response to stress

Both PTSD patients and controls had a similar increase in subjective distress dur-
ing the cognitive challenge. In PTSD patients Subjective Units of Distress (SUDS)
ratings increased from a mean of 22 (22 SD) at �60 min and 16 (20 SD) at �5
min to 58 (32 SD) at 20 min after initiation of cognitive challenge (termination of
20 min cognitive challenge period). In controls SUDS ratings increased from mean
of 16 (21 SD) to 13 (13 SD) and 51 (18 SD) at �60, �5 and +20 min, respectively.
In controls there was a more significant correlation between percent increase in cor-

Fig. 5. Gender differences in cortisol response to cognitive challenge. There was a pattern of greater
cortisol response to challenge in men with PTSD relative to the other groups that was not statistically sig-
nificant.
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Fig. 6. Gender differences in heart rate response to cognitive challenge. Women had a higher heart
rate during the cognitive challenge and in the recovery period; there was no interaction between gender
and diagnosis.

tisol from baseline during cognitive challenge and absolute increase in SUDS ratings
from baseline (r = 0.67; df = 6; p = 0.09) than in PTSD patients (r = 0.23; df =
17; p = 0.35). There was no correlation with baseline CAPS, CADSS, or Mississippi
score and cortisol levels in the PTSD patients. There was no relationship between
age and cortisol response to stress in patients or controls. There was no significant
difference in cortisol response to stressors in PTSD patients with or without cur-
rent depression.

3. Discussion

PTSD patients in this study had increased cortisol levels in anticipation of and
during a stressful cognitive challenge compared to healthy subjects. Both PTSD
patients and controls showed a similar 1.5-fold increase in cortisol levels during the
stressor relative to their own baseline. We did not find evidence for an exaggerated
cortisol response to cognitive stressors in PTSD. Following the termination of the
stressful tasks, cortisol levels dropped in both the PTSD and healthy groups to a
level that was nearly identical to the healthy group’s pre-stress cortisol level.

Stress-induced increases in cortisol in response to the cognitive stress challenge
were similar in the PTSD and healthy control groups. The absence of exaggerated
cortisol response, relative to their own baseline, in PTSD, may be related to the
nature of the cognitive stress challenge. Prior studies of combat-related PTSD found
that trauma-specific stressors, such as hearing sounds of gunfire or a traumatic script,
but not the cognitive stressor of performing mental arithmetic, resulted in increased
heart rate and blood pressure responses (Blanchard et al., 1982; Pitman et al., 1987;
McFall et al., 1990). Our own preliminary data show that trauma-specific stressors,
such as reading of a personalized traumatic script, result in greater cortisol responses
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than cognitive stressors in PTSD. We also have preliminary data on these PTSD
patients at rest measuring cortisol every 15 min over a 24 h time period. The baseline
measurements show that resting cortisol is not elevated, in fact during afternoon time
periods it is lower than controls. This together with the fact that cortisol levels fell
to levels essentially identical to controls in the recovery period suggest that patients
respond to the novel testing environment and threat of cognitive challenge in an
atypical manner with an exaggerated cortisol response, leading to higher levels of
cortisol in the 1 h time period preceding the challenge. This finding may be the
result of heightened anticipatory anxiety, or a different interpretation of the environ-
ment, among patients in the PTSD group. This would be consistent with prior studies
of exaggerated startle response to the threat of the experimental context of a testing
environment in PTSD (Morgan et al., 1995). It is also consistent with clinical obser-
vations that PTSD patients appear to have an inability to dampen responses to cues
that do not represent true threat, an effect that may be related to dysfunctional neural
circuitry involving medial prefrontal cortex, amygdala, or other brain regions
(Bremner et al., 1999a,b).

If one follows the logic that the novel environment represents a stressor then the
current findings would be consistent with the hypothesis of an increased cortisol
responsivity to stressors in PTSD. A salient point is that the cortisol response to the
cognitive challenge itself is certainly not blunted, as one might conjecture to be the
case based on findings of low cortisol levels at baseline in PTSD, increased negative
feedback of dexamethasone, and findings in depression (another stress-related
disorder) of blunted cortisol response to stress. A lower correlation between baseline
(time point �60 min) cortisol and cortisol response to stress (measured by the log
transformed AUC from 0 to 35 min) in PTSD patients relative to controls, as well
as a robust cortisol response to stress on top of an elevated baseline cortisol, are
also consistent with a relative resistance to the negative feedback effect of endogen-
ous cortisol, rather than enhanced feedback. Studies show increased feedback sup-
pression to dexamethasone feedback at central brain areas such as the hippocampus,
however the meaning of these findings is unclear since it is not clear if dexame-
thasone crosses the blood–brain barrier. Increased cortisol response to stress and a
relative insensitivity to cortisol feedback would be consistent with studies in animals
showing that stress is associated with increases in HPA axis function, increased
glucocorticoid responsivity to stressors, and insensitivity to glucocorticoid feedback.
The results are also of interest relative to previous findings of HPA axis function in
PTSD. As reviewed above, in contrast to findings from the animal literature, several
studies have shown decreases in cortisol levels measured in 24 h urine in patients
with chronic PTSD. Other findings, such as increased glucocorticoid receptors on
lymphocytes and increased suppression with low doses of dexamethasone in PTSD
(suggesting increased central glucocorticoid receptors), are also not consistent with
hypercortisolemia. Our own preliminary data of diurnal cortisol levels in civilian
PTSD also did not find baseline increases in cortisol levels. Interpreted in conjunction
with the current study, findings of baseline decreases in cortisol in PTSD may be
related to a suppression of cortisol function, to compensate for periods of increased
cortisol responsiveness to stressors. Cortisol levels have been related to psychological
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function, and PTSD patients may have normal or low baseline cortisol levels in
response to chronic suppression of responsiveness and psychological avoidance,
while the introduction of stressors over which the patient has no control may result
in exaggerated cortisol responses. In this light, low cortisol may be an adaptation to
periods of hypercortisolemia during stress. There is some evidence to support the
idea that cortisol function may be affected by prior episodes of stress-induced cortisol
release. For example, studies in humans showed that exposure to a stress with
increased cortisol release was associated with a blunting of the normal cortisol rise
seen following a mid-day meal (Follenius and Brandenberger, 1980). However,
exposure to a prior stressor did not result in a significant blunting of cortisol response
to subsequent stressors in man. These studies suggest that prior stress-induced cor-
tisol release can affect cortisol responsiveness, although the type of stimulus plays
an important role in the degree of cortisol release.

The current study did not find significant increases in measures of sympathetic
function in response to a cognitive stressor. This is consistent with prior studies that
did not find an increase in heart rate and blood pressure responses to neutral cognitive
stressors in PTSD, although those prior studies did find an increase in these para-
meters with traumatic stressors (Blanchard et al., 1982). Those findings in conjunc-
tion with the current study suggest that cortisol is a more sensitive indicator of the
stress response than outcomes such as heart rate and blood pressure.

There are several limitations and points of clarification related to the current study
that deserve comment. The data in this study are limited by the absence of measure-
ment of phase of the menstrual cycle in women with and without PTSD. Also small
sample size limits comparisons of men and women with and without PTSD. The
cognitive stress challenge may have been interpreted in different ways by PTSD
patients and controls. PTSD patients may have responded with anger, dissociative
responses or an increase in PTSD symptoms, to the cognitive challenge, in a way
not experienced by the controls.
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